
Birzeit University
FACULTY OF INFORMATION TECHNOLOGY

Scientific Computing Master Program

USING C LANGUAGE ON SCIENTIFIC COMPUTING
APPLICATIONS

By

Mohammad Mahmoud Abu Omar

 Supervisors

 Dr.Hassan Shibly

 Dr.Samir Matar

August, 2007
 Birzeit, Palestine

“This thesis was submitted in partial fulfillment of the requirements for

the Master Degree in Scientific Computing.

From The Faculty of Information Technology at Birzeit University,

Palestine.”

 Committee Members: Signature

1- Dr.Hassan.Shibly / Chair. ………………………

2- Dr.Samir.Matar / Member. ………………………

3- Dr.Mohammad.Saleh / Member. ………………………

4- Dr.Yousef.Abu.Zir/ Member. ………………………

I

ACKNOWLEDGMENTS

I wish to express my sincere thanks to my supervisors Dr. H.S. Shibly

and Dr. S.A. Matar and for their kind assistance and support while

preparation of this thesis.

Also I would like to thank Dr.Mohammad.Saleh and Dr.Yousef Abu Zir

for their rich and expensive help and guides, and to all lecturers in the

Master of Scientific Computing courses at B.Z.U.

My thanks are due to my parents, wife for their financial and moral

support.

II

ABSTRACT

This thesis uses the C programming language as a fast gate between a

wide range of scientific application systems and a computer network.

It includes some comparisons between C, C++ and Assembly in this

domain.

It implements the Intel programmable peripheral interface PPI 8255A

and the corporation between PPI 8255A and the computer's CPU and

how to manage the system.

The thesis presents the design and implementation for a general system to

be used in the large wide of scientific applications. This system is

controlled by the C language. C is used because time is critical in this

system and the need for programming the central processing unit directly.

The thesis evaluates the system's work by showing application example

that can be applied to general systems.

III

TABLE OF CONTENTS

Chapter One 1
1.1 Introduction 1
1.2 Contributions of this work 3
1.3 An overview of C 5
1.4 The C compilations 7
Chapter Two: C for Scientific Computing Applications 12
2.1 Choosing C 13
2.2 Where C is poor 15
2.3 Using C in mathematical and scientific applications 18
2.4

2.5

2.6

2.6.
1

Are C and C++ similar for scientific applications

Using C on microprocessor and firmware scientific

Applications

Using C for interfacing via processors and computer systems

Using C for Programmable input-output devices

20

23

25

26

Chapter Three: Designing A System for Multiple Scientific
 Applications

28

3.1 General design procedure 29
3.2

3.2.
1

3.2.
2

Designing procedure analysis

Interfacing

Interface devices

31

31

33

3.2.3 Device drivers

3.2.4 The main design control

Chapter Four: System Design Implementation

34

37

39

IV

4.1

4.2

Introduction to the Intel programmable peripheral interface

(PPI)

The Intel programmable peripheral interface (PPI) work

40

44
4.3 The operating modes of the PPI 8255A 50
4.4 Using the suitable mode operation for the system design 51
4.5 The corporation between PPI(8255A) and computer’s CPU 52
4.6 How does the device driver manage the system 53
Chapter Five: Scientific Computing Application Example 56
5.1 Application example idea 57
5.2 Applying the application example by the system design 59
5.2.

1

Stepper motors through application example 61

5.2.

2

Power supply 64

5.2.

3

Infrared sensor 65

5.3 The expected model design for the application example 67
5.4 Analyzing the system management for parallel interfacing of 69
5.5 Controlling the stepper motor movement 73
5.6 Analysis of the software application example 75
Conclusion

Future Work

80

82
References 83
Appendix A

Appendix B

90

95

V

LIST OF FIGURES

Figure Page Title
1.1 9 Compilation process.
3.1 29 General design procedure for parallel interface

application.
4.1 45 Block diagram of The PPI 8255A.
4.2 45 The PPI 8255A interface.
4.3 48 Control register and their control functions.
5.1 60 Application example system design.
5.2 62 Excitation of stepper motor coils.
5.3 67 Controlling the movement by infrared sensors.
5.4 68 Application example model design.
5.5 69 Control register loaded by 90H.
5.6 71 Connecting the power supply and infrared sensors

with Port A.
5.7 76 Analysis of power supply controlling.
5.8 77 Canceling the work of motor 2.
5.9 78 Canceling the work of motor 1.

 LIST OF TABLES

Table page Title
5.1 64 Wire voltage of power supply.

VI

VII

Chapter One

1.1 Introduction

The C programming language can be used in a wide range of scientific

computing applications. It is not easy to decide which applications will C

suitable for. There are many important factors that must be taken into

consideration, such as: time, speed, size, performance, development,

maintenance, cost and economy. Some applications depend on one or

more of these factors as primary requirements. The C language can

satisfy some requirements for certain applications. The main question to

ask if the C can satisfy one or more of these requirements on some

applications, can this lead us for saying that C can satisfy these

requirements in all other applications?

This thesis clarifies the applications that C is suitable and must be the

first choice to use with, and also applications which C is poor with.

C has simple and small compilers which make it is able to execute

programs with more speed and less time. C can work with digital and

analog environments, it is able to portable between them, the versatility

of C allows it to be run on the full range of processors, from 8-bit

1

microcontrollers up to the Cray series of super computers, according to

these characteristics, the thesis shows that C is the best and the first

choice to use in the processors and computer- based applications.

This thesis applies these C characteristics through designing a parallel

interface system which thesis presents; it is designed and implemented

not only for specific applications but also for multiple applications with a

good level of efficiency.

The role of C through processors and computer-based applications and

the importance of C speed in this type of applications are evaluated by

showing an application example which is applied on the system design,

and the results are analyzed throw the application example.

2

1.2Contributions of this work

This thesis has the following contributions to the scientific research:

1- C language must be the first choice to be used in the following

 scientific applications:

a- Applications concerned with speed, size and performance.

b- Applications that use compiler writers and interface device drivers.

c- General machine applications.

2- C language is a poor tool and must be avoided in the following

 scientific applications:

a- Applications concerned with development.

b- Applications that have a large-scale software.

c- Applications with portable software program.

d- Applications which depends on memory management.

3- Using the C language as the main tool or a tool for final production in

the mathematical applications is not recommended and must be

avoided.

 4- Using C language is extremely different from C++ in the scientific

applications. Object oriented features aren’t enough to make

3

 C++ better than C in general.

5. The theory for converting a system design of interface applications

 to a general system at a good level of efficiency, can be a achieved

 by using:

a- Parallel interfacing.

b- The programmable peripheral interface PPI(8255A) as interface

device.

c- Programming language C as a device driver and a system

software.

d- Computer central processing unit (CPU) and a network as main

control of the system.

4

1.3An Overview of C

Dennis Ritchie initially [2] developed the C language at the AT & T Bell

laboratories in 1972. His objective was to use a high/low-level language

to implement the UNIX operating system in a way that was easy to

maintain yet powerful and portable. To achieve this, he designed a

language that had many effects. The most important was the language

BCPL. The influence of this on C continued indirectly through language

B. Therefore originally, the main usage of C was in system

programming. Compilers, operating systems and utilities have all been

written in C. It excels in these areas and is now applied to many other

areas of difference types of computer systems. After its adoption, the C

language, unlike other many languages, tended not to split into different

dialects. By 1983, it had matured to the point where it required

standardization. Most C products now comply with this standard and not

with the original implementation [2].

Although it was originally intended to run under UNIX, there has been a

great interest in running it under the MS-DOS operating system and

specifically on the IBM personal computers and compatibles. It is an

5

excellent language for this environment because of the simplicity of

expression, size, the compactness of the code, and the wide range of

applicability.

It allows the programmer a wide range of operations from high level

down to a very low level approaching the level of Assembly language.

A program written in C will have an increase in runtime and it is simple

to write and easy to maintain more than the Assembly language [1].

1.5 The C compilations

6

The high-level language program in C is translated into a machine code

that can be directly executed on the hardware. For doing this effectively,

the compiler must analyze the source program as a larger unit, usually,

the entire source file, before producing the translation.

A program needs only to be compiled once and if it has no errors, it can

be executed many times. Many programming languages including C, C+

+, and FORTRAN, are typically compiled. The LCS-2 Assembler is an

example of an elementary compiler. In contrast to an interpreter, the

compiler processes the high-level language program and converts it into

a machine code. We provide the compiler with a file, or possibly

manipulate files, containing the program and it creates a new file

containing a machine language version of the code. The compiler doesn't

execute the program but rather only transforms it from a high-level

language into the computer's native machine language [1].

The executable code is a machine language representation of a program

that is ready to be loaded into memory and executed. The entire

compilation process involves several components, only one of which is

the compiler, because when using the C compiler, the processor and the

7

linker are often automatically invoked. Figure 1.1 shows how the

compilation debugging, linking and executing processes are handled by

these components. In this figure it shows the overall compilation process,

the preprocessor, compiler, the linker. The inputs are C source and

header files and library object files, the output is an executable image.

 A C compiler often has additional capabilities that provide a user-

friendly environment for implementing and testing C programs.

The C preprocessor scans through the source files (which contain the

actual C program) looking for and acting upon C preprocessor directives.

The directives instruct the preprocessor for transforming the C source file

in some controlled manner, for example, by substituting the character

string DAYS_THIS_MONTH with the string 30 or by inserting the

contents of file stdio.h into the source file at the current line.

8

Figure 1.1: Compilation processes

9

All preprocessor directives (header files) have a hash sign # as the first

character. All useful C programs rely on the preprocessor .After the

preprocessor transforms the input source file, the program is ready to be

handed over to the actual compiler. The compiler transforms the

preprocessor program into object module, which is a machine code for

one section of the program.

Compilation has two major phases:

a- Analysis: where the source program is broken down into its

constituent parts.

b- Synthesis: where a machine code version of the program is

generated.

Often, the two portions of compiler corresponding to these two phases

are called the compiler’s front end and the compiler’s back end.

It is the job of the front end to read in, parse, and build an internal

representation of original program.

The back end generates the machine code, if directed, attempts to

optimize this code to run more quickly and efficiently on the particular

computer for which it is generated. Each of these two phases is typically

10

divided into sub phases where a specific task such as parsing, register

allocation, or instruction scheduling, is accomplished. Some compilers

generate assembly code and use an assembler to complete the translation

to machine code.

The linker takes over after the compiler has translated the source file into

object code. It is the linker’s job to link together all object modules and a

library to form an executable image of the program.

The output of the linker is an executable image. The executable image is

a version of the program that can be loaded into the memory and

executed by the underlying hardware. When click on the icon for the

web browser on your computer you are constructing the operating system

to read the web browser executable image from your hard drive and load

it into memory and start executing it [1], [3].

11

Chapter Two

C for Scientific Computing Applications

Scientific computing has a wide range of applications, and also uses a

large several computing languages, software packages and tools. It is not

easy to decide the most suitable language/tool for a specific application.

C language is one of these computing languages that acts as a powerful

tool on some applications, and a poor one on others.

According to the powerful properties and characteristics for the C

language, this thesis discusses guides and analyses some scientific

computing applications and solutions by applying the C language as

powerful tool.

12

2.1 Choosing C

The thesis gives a specific and clear way for choosing C in scientific

applications. C can be effectively used to achieve more performance in

some systems and applications.

Speed, size and performance are three important elements in some

scientific applications. Therefore C language will be the good choice for

such applications. In this kind of applications, the C compiler is very

mature and fit through experience [30], it is not complex compared to

others, and also C programs will run a bit faster.

Also, C is the most suitable language for all applications that use the

interface device drivers, digital-analog and for compiler writers [29]; this

is for two reasons:

1- These scientific applications related to (time-critical applications)

[28].

2- These applications need a tool for programming the central

processing unit (CPU) directly [32].

Above all, C is rich for general machine applications; since it is a low

level language with some high level features. In these applications C can

13

develop the following:

1- Increasing the implementation [28].

2- Debugging the time [28].

The C is a good implementation and efficient language in all applications

which is required to replace the assembly language as well as greater

readability and writ ability [15].

C is a fundamental language, especially if we look at the other important

fields that C acts as an expensive tool for them:

1- Writing and building an entire operating systems, which is

impossible to do by scripting languages, and more difficult

 in Java [27], [31].

2- Building embedded systems, libraries and components [27], [31].

3- Acting a considerable role in Computer graphics, for writing fast

computer games [20], [27].

4- C is the most popular language in science and engineering

graduates and amongst professional programmers.

14

We have improved the speed of C, by making a comparison between two

simple similar programs, the first is written by C, and the second by

JAVA, the output of the two programs is printing "welcome"

word. The comparison is done by using (Windows XP Performance

Test); it is a Benchmark which shows the CPU Usage Time.

To see this comparison experiment and the results, see Appendix A.

2.2 Where C is poor?

Although, C is creative for some applications, it is poor for others.

To be at a good level of performance through applications, we mustn’t

use C on the following:

Firstly, applications that primary concern with development.

These applications need rapid development, which C can’t achieve;

development time is much longer in C; since bugs creep in more easily

[29]. Hence cost is also higher for C application programs.

Java language with these applications will be a correct choice, especially

the primary concern here is for development not for speed.

Secondly, applications which have a large-scale software.

15

C hasn’t a direct support for modularity, its naming structure provides

only two main levels: external (visible every where) and internal

(within a single procedure) [15].

C doesn’t support the Object Oriented (OO), so C isn’t suitable language

with large scale software applications, since the workers in this type of

applications must write a large relations and use the internal relations

instead of classes which C doesn’t support, which is complex and hard

[15].

Thirdly, applications with portable software programs.

In the developing of C, the portability wasn’t an explicit goal in its

design since it is actually a typed assembler aiming at machine level [22],

[15]. In the underlying machine model assumed by the processors of C

made us well aware that not all machine were the same. Many C types

and operations are closely tied with the machines and make it difficult to

port the software to other type of machine [15],[45].

Through these applications, software will move to new computing

environments, so we see that portability in these applications is not

16

important but also much necessary. The benefits of portability are

concluded on the following:

1- When software needs to move to new computing environments,

there is much less effort than it would to rewrite them [22].

2- This leads to decrease the software maintenance and development

[22].

3- And also the economic advantages for decreasing the cost.

C isn’t a suitable in all applications which depends on memory

management, because there isn’t a good mechanism for garbage

collection, and C doesn’t support automatic garbage collection.

 The objects will stay in the memory, and make it full, so the worker

must delete every object when it is finished . [15], [18], [47].

Java language is suitable in this field because it has automatic garbage

collection, There is a continuous test to delete every object in the

memory when it is finished.

17

2.3 Using C on mathematical and scientific applications

There is a great tend to use the C language on mathematical and scientific

applications; especially that C codes can manipulate mathematical

operations, matrices, and vectors, by C structures functions and methods

can manipulate.

This thesis main concern is to use the C language in some scientific

computing where speed, performance, effort and cost are major concern.

In Matlab, which is the rich mathematical and scientific package, the

codes take a relatively long time to execute [19].

So, if more time for executing some applications in Matlab more than C

leads to make C is more suitable than Matlab on these scientific

applications? Also, Matlab was built on C language.

If you look at some expensive mathematical packages such as Matlab,

Mathematica, Maple….etc. You will find the following:

1- Easy to use for mathematically.

2- Rapid prototyping.

3- Rich specialist libraries.

4- Include different features for numerical computing [25].

18

Two answers for choosing a tool of mathematical applications:

The first is not to use C, and instead, use the expensive mathematical

packages such as Matlab, Mathematica, Maple….etc. Even if C has more

execution speed.

The second is to combine between C and one of the expensive

mathematical packages. On other hand, we can combine the creative

points from each of them, for obtaining to the most performance. This

can be done by using the expensive mathematical package for rapid

prototyping and others then generate C codes for final production [25].

But this way may be correct in theory, but it is fail in practice, since

development can be accomplished in different multiple environments.

Any change to machine generated C code has to be propagated from the

code written in Matlab, Mathematica… [25], other problems will appear

such as:

1- Increasing the cost for purchasing multiple software packages and

compilers [25].

2- Developing and maintaining of codes will be difficult and also

costly.

19

2.4 Are C and C++ similar for scientific applications?

C++ is an object oriented programming (OOP). This object oriented

defines in addition to data type of a data structure the types of operations

which can be applied to the data structure, so data structure will be an

object that includes both data and data functions; further more, objects

can inherit characteristics from other objects by creating relationships

between objects.

No one can ignore the advantages and benefits for OO features in many

applications, but this this will not lead for preferring using C++ to C at

all. The C++ compiler is a lot more complex than a C compiler [30], so

C++ programs may run a bit slower than C program.

In applications that primary concern with OO features, C++ is the

suitable choice, but in other applications, OO features may not be as

important as other factors such as time which is related to speed.

Therefore on some applications C is the suitable, not the C++

when the primary concern is time/speed more than OO features.

20

For example: formatting numerical output to line up in columns, which is

very desirable in numerical computing, is slower and has less

performance in C++ than C [26].

Some OO features such as a (polymorphism) increase the problem of

speed and need for much time. In C there is a direct function call, this

means that when calling a function, the compiler and linker will

determine the address of the function to be called [17]. In C++, there is

indirect function call. This means when calling a virtual function, linker

will not know the address, it is bound at run time and stored in a virtual

table, every object is linked with the virtual table, so calling a virtual

function means getting the address of virtual table, then using an offset to

access the called function’s virtual table entry and calling that functions

[17], [26].

Thus, the C++ indirect calling causes the following:

1- Increasing the execution time.

2- Needing to more bytes than needed in the C direct calling [17].

So, the thesis insists that we can’t say: C for all or C++ for all, and we

can’t say that OO features always make C++ the first choice.

21

For obtaining the most performance scientific applications, we must

consider that applications with primary concern to the OO and not

critical time applications, C++ is the tool not C. At the same time

applications with primary concern and critical to the time, more than

OO features, the tool should be C not C++.

This work insists that in scientific computing, one should firstly look

at the type of application before finding a tool that is more effective

with this application, and shouldn’t firstly search for the most

powerful tool, since a powerful tool will be a poor tool with other

applications.

22

2.5 Using C on microprocessor and firmware scientific

 Applications

Microprocessors, digital signal processing devices (DSPs) and analog

devices are programmed in the same languages as other scientific and

engineering applications, usually there are two choices: C or Assembly

language.

Applications that use assembly can execute their programs faster than C

and also with less manufacturing cost, the C code usually requires a

larger memory than assembly, resulting in more expensive hardware. But

applications that use C are easier to develop and maintain. And C is much

more efficient when there is a large, general purpose register set and a

unified memory space. These future improvements will minimize the

difference in execution time between C and assembly, and allow C to be

used in more applications [38].

There are still many valid reasons to choose C as a programming

language in this type of applications:

1- If there is a substantial amount of code written in C in the application,

we obviously want to make full use of the analog devices' C compiler. If

23

we are concerned with the portability of the code between different

platforms, we will want to consider writing the majority of your code in

C. Analog devices' assembly language will only work on an analog

devices' DSP and there are no efficient conversion programs available to

translate code between different manufacturer's DSPs [36].

2- Using C will be faster in the applications that don’t spend many hours

optimizing the code to fit the memory and throughput requirements of the

application [36].

3- There is also a way for getting to the best case: writing the program in

C, and using assembly for the critical sections that must execute quickly.

This is one reason that C is so popular in science and engineering. It

operates as a high-level language, but also allows to directly

manipulating the hardware [38].

24

2.6 Using C for interfacing via processors and computer systems

In interfacing via processors and computer systems the C language is a

creative tool, this is because of C characteristics which are very suitable

in this type of applications.

The C language can be run on the full range of processors from 8-bit

microcontrollers up to Cray series of supercomputers, and it can be

worked in analog and digital environments and it can be portable

between them.

The C includes a rich set of operators to configure input-output devices

and also flag testing. C can easily interface with I/O cards, It is able to

program the CPU directly and manipulates the data through registers

this will make the interfacing with the outside world in electronics and

electrical projects with minimum of hardware.

So, using C is very close to the target machine, and leads to reach to the

best design possible in this type of applications [39].

25

2.6.1 Using C for Programmable input-output devices

The parallel interfacing considered as the simplest method to

communicate between the real world by computer systems.

This interfacing depends on the parallel ports of I/O cards and circuits,

which include the integrated circuits and processors (integrated chips),

such as Programmable Peripheral Interface (PPI) 8255A .

Although these chips are complex, but they are very easy to program,

they include ports, registers and there are a data bus buffers.

The C can program the CPU directly, and the CPU can see all ports and

addresses, so by C the CPU can write to and read from the ports.

The C is low- level enough to write the device drivers, this is because of

C compilers which contain the library functions which make C able to

manipulate the I/O port-mapped. For example the Microsoft C compiler

version 5.1 uses inp() and outp() functions which are defined in the

header file conio.h. The Borland Turbo C uses inportb() and outportb().

The calling of these input- output functions in C is very easy , which is

achieved by #include<conio.h> .

26

For example C can implement the Programmable Peripheral Interface

PPI 8255A, in different applications, the input – output functions of C,

can manipulate all ports and also the control register of the PPI [39].

On the next chapters of this thesis we can see the ability of C in

designing the interfacing applications with computer systems, and how

the C can manage these systems with high level of performance and

efficiency.

27

Chapter Three

 Designing a System for Multiple Scientific Applications

There are many different fields and systems in scientific computing

applications. A system in our work has to analyze, design and

manipulates some applications that are provided by the integration

between software and hardware. Any applicable idea, related to this type

of applications, can be achieved by this system with a good level of

performance and development. Therefore our system design is to be

considered as a general system. It can be applied not only for one specific

application, but also for a multiple scientific applications. In this system

design we want to see the effect and the power of using C as a tool

through these types of systems.

28

3.1 General design procedure

The interface device driver applications in any system design may be

considered as the following procedure:

 Interfacing

 Interface Devices

 (Hardware)

 Device Drivers

 (Software)

 Figure 3.1: General design procedure for parallel interface applications

 The need here is a system design and we want to reach to a general

system for multiple applications

29

Our system design is achieved by the following ways:

Firstly:

In this procedure, there are general stages such as:

1- Interfacing.

2- Interface devices.

3- Device drivers.

And there are two types of interfacing and different large number of the

interface devices, and also big choices for software tools/languages the

correct choices for these stages are very important for achieving our

design.

Secondly:

The control source/ type in this procedure is general, it is may be from

integrated circuits, controllers, and computers…….etc. The suitable

choice to the control source/ type is another factor to achieve our system

design.

30

3.2 Design Procedure Analysis

According to the design procedure summary in previous section, the

analysis for design procedure will be in the following:

1- Interfacing.

2- Interface devices.

3- Device drivers.

4- The main design control.

Now we explain each of them:

3.2.1 Interfacing:

The interfacing is a term for computer programs that accepts input from

the user while they are running; for example, a game that waits for the

user to take an action, then responds to that action. The interaction

between computer and user may take place through typed commands,

voice commands, mouse clicks, or other means of interfacing. The

opposite of interactive processing is batch processing, where all the

commands are given before the program starts to run.

31

There are two types of interfacing: parallel and serial. Parallel interfacing

has a great advantage for using it in the design. This is because of the

speed; all eight bits of an 8-bit data, one byte can be transferred

simultaneously, but if we look at the serial interfacing, we find only 1 bit

is transmitted at a time. So parallel interface provides a multi line data

channel in which bits are sent across multiple lines simultaneously. The

bits must stay in synchronization as they cross the wires, so the parallel

interfaces are limited in distance. Parallel interfaces are usually

associated with printer connections, but several technologies implement

parallel interfaces, including:

• HIPPI (High-Performance Parallel Interface) HIPPI is a high-

performance parallel interface that is used in data centers and

supercomputer applications.

• SCSI (Small Computer System Interface) SCSI is a parallel

interface for disk storage devices that is characterized by 50-pin or

68-pin connectors.

• OFDM (Orthogonal Frequency Division Multiplexing) OFDM

is a multi carrier modulation (MCM) scheme in which many

32

parallel data streams are transmitted at the same time over a

channel with each transmitting only a small part of the total data

rate.

• Computer’s bus: The computer bus is the peripheral interface bus

inside desktop computers and servers. Which we used it in our

design.

3.2.2 Interface devices:

We must find a parallel interface device for obtaining our general system;

especially there are many different types of parallel interface devices

from different companies such as: Intel and Motorola…

 Our research work sees that Intel programmable peripheral interface

(PPI) 8255A, can satisfy our general system. The PPI provides a parallel

port to which external devices can interface easily. It is a bi-directional

port that can receive or transmit up to 16 bits of data [35]. The PPI

(8255A) is an important factor in the design, this is due to its

characteristics, which make it the only parallel device at present that can

perform the generality in the system with a considerable degree of

performance.

33

These characteristics are:

1. Digital input and output interfacing systems.

2. Flexible enough to interface almost any input and output

device without the need for additional external logic, and

can permit easy implementation of parallel input and output

in the processors.

3. Represents the optimum use of available pins.

4. Includes important features such as: single-bit, 4-bit, and

byte-wide input and output ports; level sensitive inputs;

latched outputs; strobed inputs or outputs; and strobed

bidirectional input/outputs.

3.2.3 Device drivers:

A device driver is a tool/software used to control the interface device,

and also control the system.

The correct choice for the system software (tool/language) makes

a system in a good level of performance and speed, which are very

important for our general system especially, if we have a general

system with less performance and speed, this generality doesn’t mean

34

anything, in this case it is more suitable to design a system for every

application with a high level of performance and speed than design a

general system for multiple applications with low level of

performance and speed.

So, what is the suitable language in our system?

Our system acts as device driver system. The tool of this type of

applications is discussed on chapter 2, and we find that C language

acts as a powerful tool on these applications. Further more, Intel PPI

(8255A) effectively works with C system software, this is because of

the compatibility between C and Intel processors. If application

software is implemented entirely in C code, the software can be easily

ported for a processor based on Intel processors [33]. This is one of

reasons in our research for choosing C through our system design.

The C programming language has found wide acceptance as the primary

programming language for embedded microprocessor software and

firmware development. The demonstrated utility of C in embedded

applications development can be applied to microprocessors applications

as well. The arguments for this are attracting.

35

1- Many engineers and scientists and most newly graduated engineers

and scientists know C already, so the development of applications can

start quickly, without the burden of learning the characteristics of a new

assembly language and instruction set of the particular microprocessor

chip the engineer may be using.

2- C allows for applications to be developed, prototyped, analyzed and

tested in a workstation or PC environment using commercially available

C compilers and tools. This prototyped code can be used, sometimes

unaltered, as the basis for the application software running on the

microprocessors target.

3- C is a well defined. Therefore, C code can become portable to any

microprocessor chip for which there exists C language support. The

stability of C in the future is insured with the adoption of the ANSI

standard for C.

4- The majority of the software developed for microprocessors

applications is really control code requiring sophisticated data structures

and complicated control flows. This control code typically represents a

small fraction of application execution time, but a significant portion of

36

the software engineering effort. Control code is ideally suited for

development in C. Also, C allows easy access to the underlying

hardware. Code that needs to access hardware control and status registers

and input and output (I/O) ports can be written in C. Using C is easier

and will decrease the amount of time that is needed to develop an

application [36].

So, our system tool and device driver will be the C language.

3.2.4 The main design control:

We use a central processing unit (CPU) of a computer for major

system control, to achieve our system design. CPU can control and

configure the interface device, and by reading from the device

registers. CPU knows what happens on the interface device [13].

The CPU and interface device can exchange data by reading from or

writing to the interface device data register.

In addition, using a computer for controlling systems will open the

choices for scientific computing designers and workers to update a

system software in the future. Since on computer you can run any tool

37

that you need, this can’t be achieved when we use other sources of

control such as the controllers, which work under a specific software.

In our system design, using C as the system software and Computer’s

CPU, will give more flexibility and performance for the system; since

that during our scientific research and analysis, we deduce that there

is compatibility between them [37], [44].

This design procedure builds and creates our general system, for using

it in multiple scientific applications; it can be used for any inputs and

any outputs, with a high level of performance and speed, just we only

determine what are the inputs and outputs of an application, and then

we can apply it in our system for executing.

38

Chapter Four

System Design Implementation

In this chapter the system design implementation in both

hardware and software will be discussed. And how the

system design can be achieved and developed through

implementation.

39

4.1 Introduction to the Intel Programmable Peripheral

 Interface (PPI)

Computers are not just devices to calculate and perform mathematical

operations. Computers should interact with the users and the

programmers as well. For example the computer should accept input

from the users through files, keyboard, mouse... On the other side the

computer should show outputs either by the screen or by print out using

the printers or other devices. The main problem in making the computers

interact with such devices is the timing. To illustrate, the processor is

much faster than these devices and should wait for them to perform those

actions. There are two options: first, which is very inefficient and

impossible, is to make the processor very slow to wait for the devices.

Second way that is used now is to make the outer devices have some kind

of conversation with the processor. That kind of conversation is called

handshake as it makes the processor sends and receives signals from the

devices and to the devices simultaneously. The processor starts sending a

pulse to the device telling it that it will send some characters to the

40

device and the device should respond and tell its status whether it is busy

or off line or it is ready to receive the characters.

*Handshaking

There are two kinds of handshake operations the first is called simple

handshake and does not need much effort to perform as it just needs one

line of data to tell the processor that it is ready to and finished the

previous order. That kind of simple handshake is used in the keyboard

when we press a key. The second kind of handshake is the double hand

shake and it uses the same methodology to in performing the operation

except that it needs to lines and two kinds of input signals; one form the

processor and the second from the device itself. That kind is more

complicated and is used in the operations of the printers and in some

industrial applications.

* Single handshake

The problem of having the sent data faster than the ability of the

receiving device led to make us use the handshake technology. That is

clear in the times when we need more sensitivity of having and sending

41

data at specific time. In addition to the simple strobe way single strobe is

used instead. In that method the peripheral gets the data whether input or

output and send a strobe (STB) to the processor to inform it that it has

valid data. Then the processor starts reading them and send an

acknowledge line(ACK) or signal that it read the data and it is ready to

receive the next line of data. The cycle goes on until they finish all the

data. That operation can happen in both the input and the output

operations. For example the printer can use that method to inform the

processor that it has finished printing the character and ready to have the

next character to be printed.

* Double handshake

When operations need to be more accurate in dealing with the time it is

better to use double handshake. The same methodology used in single

handshake can be used in the double handshake and with the same

waveforms.

42

* Wave forms and their relations with the handshake

To illustrate the relationship between the wave of the timing diagrams

and the handshake operations we can take the simple process of pressing

a key on the keyboard as an example. The press of the key causes an

interrupt to the processor to read the ASCI code coming from it which is

putted on the parallel data lines of the peripheral input ports. After

putting the data on the data lines the peripheral then sends an strobe STB

to inform the processor that it has valid data on it and then the processor

starts reading those data characters. That is a very simple process of the

strobe and the communication between the processor and the peripheral

and the timing waveforms. The STB or the ACK signals for the

handshake transferees can be produced on a port pin by instructions in

the program. That method is taking much time from the processor. So

parallel port device is used. The 8255A is designed to automatically

managing the handshake operation. The internal address for the device is

port A 00; port B 01; port C 10; control 11. Asserting CS(chip select)

input of the 8255 will enable it for reading or writing. The CS will be

connected to the output of the decoder circuitry to select the device when

43

it addressed. The reset input of the 8255A is connected to the system

reset input. So they are going to be reset in the same time to be initialized

for input. When connecting the 8255A to 8086 processor for example.

One of the 8255A is connected to the upper half of data bus of the 8086

system. Another 8255A are connected to the lower half of the 8086 bus

system. So that we can enable one device or a word can be enabled by

the same time according to the truth table for the I/O port. The base

address of the first half of the data bus is going to addressed by the base

address of FFF8h and the second is of base address of FFF9h.

4.2 The Intel Programmable Peripheral Interface (PPI) work

The interface parallel device Intel programmable peripheral interface/PPI

(8255A) was used. Its work during the system and through the computer

system will be discussed.

Firstly, we show the block diagram of this PPI 8255A, see figure 4.1 and

its pin layout in figure 4.2:

44

 Figure 4.1 : Block diagram of The PPI 8255A [39]

 Figure 4.2: The PPI 8255A Pins Layout [36]

45

The left side of the block represents the microprocessor interface. It

includes an 8-bit bidirectional data bus D0 through D7.

Over these lines, commands, status information, and data are transferred

between microprocessor interface and 8255A.

These data are transferred whenever the microprocessor performs an

input or output bus cycle to an address of a register within the device.

Timing of the data transfers to the PPI 8255A is controlled by the

read/write (RD and WR) control signal. The source or destination register

within the 8255A is selected by a 2-bit register selected code.

The source or destination register within the 8255A is selected by

a 2-bit register selected code. The microprocessor must reply this code to

the register select inputs, A0 and A1 of the 8255A.

The port A, port B and port C registers correspond to codes

A1A0= 00, A1A0= 01, and A1A0 = 10, respectively.

Two other signals are shown on the microprocessor interface side of the

block diagram; they are the reset (RESET) and chip select

46

(CS) inputs, CS must be logic 0 during all read or write operations to the

8255A, it enables the microprocessor interface circuitry for an input or

output operation.

On the other hand, RESET is used to initialize the device. Switching it to

logic 0 at power up causes the internal registers of the 8255A to be clear;

Initialization configures all input and output ports for input mode of

operation. The other side of the block corresponds to three byte- wide

input and output ports. They are called port A, port B, and port C and

represent Input and output lines PA0 through PA7, PB0 through PB7,

and PC0 through PC7, respectively. These ports can be configured for

input or output operation. This gives a total 24 input and output lines.

As it mentioned the operating characteristics of the 8255A can be

configured under software control. It contains an 8-bit internal control

register for this purpose. This register is represented by the group A and

group B control blocks in figure 4.1, logic 0 or 1 can be written to the bit

positions in this register to configure the individual ports for input or

output operation and to enable one of its three modes of operation. The

control register is to write only and its contents are modified under

47

software control by initialing a write bus cycle to the 8255A with register

select code A1A0 = 11. The bits of the control register and their control

functions are shown in figure 4.3 bits D0 through D2 correspond to the

group B control block in the diagram of figure 4.1.

 Control word

Figure 4.3: Control register and their control functions [39]

48

Bit D0 configures the lower four lines of port C for input or output

operation. Notice that logic 1 at D0 selects input operation and logic 0

selects output operation. The next bit D1 configures port Bas an 8-bit

wide input or output port, Again, logic 1 selects input operation and logic

0 selects output operation. The D2 bit is the mode select bit for port B

and the lower four bits of port C, it permits selection of one or two

different modes of operation called (MODE 0) and (MODE 1).

Logic 0 in bit D2 selects MODE 0, while logic 1 selects MODE 1.

The next 4 bits in the control register, D3 through D6, correspond to the

group A control block in figure 4.1.

Bits D3 and D4 of the control register are used to configure the operation

of the upper half of port C and all of port A, respectively.

These bits work in the same way as D0 and D1 configure the lower half

of port C and port B. There are now two mode select bits D5 and D6

instead of just 1, they are used to select between three modes of operation

known as MODE 0, MODE 1, and MODE 2.

49

The last control register bit D7, is the mode set flag, it must be at logic

1(active) whenever the mode of operation is to be changed [7].

 4.3 The operating modes of the PPI 8255A

As it mentioned in section 4.2, there are three operating modes for the

8255A PPI(programmable peripheral interface), which are MODE 0,

MODE 1 and MODE 2.

According to the figure 4.3 in section 4.2, we notice that the all ports of

the PPI 8255A can be set in any one of the three modes of operation.

To set all ports A, B and C in MODE 0 operation, load bit D7 of the

control register with logic 1, bits D6D5 = 00, and D2 = 0, logic 1 at D7

represents an active mode set flag.

Thus the ports A, B and C are set on mode 0, and the ports A, B can be

configured as 8-bit input or output ports, port C can be configured for

operation as two independent 4-bit input or output ports, this is done by

setting or resetting bits D4, D3, D1, and D0.

Similarly, for setting all of the ports in MODE 1 operation, load D6D5 =

01, and D2 = 1, bit D7 = 1 to activate the mode set flag.

50

In this way the ports A, B are configured as two independent byte-wide

input or output ports, each of which has a 4-bit control data port

associated with it The control data ports are formed from the lower and

upper nibbles of port C, respectively.

On the MODE 2, the setting of the ports in this operation mode will be

done by loading bit D6 = 1, bit D7 = 1 to activate the mode set flag, other

bits haven’t an effect for the setting of this mode operation, so it can be

loaded by either 0 or 1 [7], [8],[42].

4.4 Using the suitable mode operation for the system design

Mode 0 is the only mode operation from the PPI modes is a suitable for

our system, our research work sees that for the following reasons:

1- Data is simply written to read from a specific port, it provides

 simple input and output operation for each of the three ports, and it is

 a bidirectional mode.

2- In this mode there is no "hand shaking" signal as in MODE 1,

 and MODE 2.

So, this operation mode is important to achieve the idea of our design,

and increase the performance.

51

4.5 The corporation between PPI (8255A) and Computer’s CPU

The interfacing of the 8255A programmable peripheral interface is done

by the using of the PPI 8255A interface card or circuit, which plugs into

any variable 8 or 16-bit slot (AT-slot) on the computer's motherboard for

doing both digital input and output to the computer. This card is simple

to use and powerful! With this card you can interface and control almost

any device such as DC (direct current)and stepper motors, relays,

transistors, LCDs, keypads, DAC (digital to analogue) and

ADC(analogue to digital) converters. This card is compatible with all

computers .The included 34-pin connector cable, brings all 24 digital

lines, and +12,-12, +5,-5 V lines to the Terminal Expansion Board. The

included Terminal Expansion Board has standard header posts so that

you can easily hook-up your sensors, motors, and engineering creations.

It even has a 152-hole prototyping area so that you can build any of your

additional circuits on if you wish. Assigning an address to the card can be

made physically by using jumpers on the card, and software can tell the

computer's CPU (Central processing Unit) what the address is.

52

The three ports 8-bit data bus buffer is used to interface the PPI 8255A to

the system data bus, these ports are: A, B and C.

Data is transmitted or received by the buffer upon execution of input or

output instructions by the CPU.

Control word and status information are also transferred through the data

bus buffer [43].

4.6 How does the device driver manage the system

On the system device drive, parallel interface device and the computer

processor controlling all are connected on one system environment,

where the device driver manages the working environment of the system

as we see in the following:

1- C codes can define and address the three ports of the PPI (8255A),

 Which are (port A, port B, and port C) and also the control register

 (Cr), as we see in the flowing codes:

 # define pa -------

 # define pb ------- Addresses

 # define pc -------

 # define cr --------

53

See Appendix for details.

2- Loading the control register (Cr) by the control word, witch provides

 the main management for the device driver; since it cotains

 information about the configuration of the ports to be input or output,

 and it determains the modes operation for setting it in 0, 1 or 2, and

 the bits setting or resetting.

The loading of a control word X to the control register can be achieved

by the follwing code:

 out port b (cr , X)

3- Manpiulating any other port in the PPI (8255A) in both input or output

cases, as we see in the following codes:

 …. port b (…...,……)

 In out port name hexadecimal address

These codes can configure the PPI (8255A) through the system; ports

defined and addressed and configured to be input or output, the operation

mode selected and any input or output port can also be manipulated

through the system.

54

Scientific

Application

55

Chapter Five

 Scientific Computing Application Example

On this chapter, we have an idea of a scientific application related for

device driver applications; we use our general system that we have

designed and implemented on this thesis, and then we can see how this

application idea can be achieved and executed through our system

design, and we clarify the ability of C characteristics through the system

and through this type of applications, this evaluations and all the results

are discussed and analyzed scientifically.

56

5.1 Application example idea

The application is (Electronics Security System); it is an electronic and

mechanical system used to observe and guard a specific area of interest

to the security system.

This model depends basically on observing the area that guarded

electronically by using cameras.

These cameras are sat on stepper motors for photographing any moving

bodies entering this area.

 If a moving body enters from one side, camera in that side will start

moving and photographing the object while the other cameras are still.

Observers in observing room are supplied with information from

computer screen about the side which is entered.

 In the case of entering more than one moving bodies from different sides

at the same time, then the system will supply the security man in his

room with information about the sides which were entered and which

camera. The camera will start moving and photographing to detect the

intruder. The model supplies other different security services such as:-

57

1- Control handling to move camera or cameras to a place or aside that

we want to observe it.

2- Observing a specific place or establishment in the guarded area; the

names of establishments and other places are showed on computer

screen. Thus the security man in his room can move a camera to a place

or establishment named (x) for example, just by choosing it from

computer screen, in the model the establishments in the guarded area

could be colleges, gardens and research centers.

 In the application only two cameras are enough to observe the four sides

of guarded area where each of them has the responsibility of

photographing two perpendicular sides.

58

5.2 Applying the application example by the system design

If we look to the application example idea, we notice that the main input

and output parts are:

- Stepper motors and its driving circuits for moving cameras.

- Power supply.

- Infrared sensors.

Power supply and infrared sensors have to be input parts, and stepper

motors and its driving circuits are output parts.

So, power supply and infrared sensors attached on input port of 8255A

(assuming to be port A). Stepper motors and its driving circuits attached

on output port (assuming to be port B), just by determining the input and

output parts of the application example, our system can achieve the

application; and gives the following design procedure for this

application:

59

 Figure5.1: Application example system design

This figure presents the design procedure of the application example,

through our system design.

After running the C software to the design, according to main C control

and management codes that related to our general system design, which

60

we discussed in chapter 4, the application example will be ready to run

and execute.

When we want to talk about the external hardware side in application

example, we will talk about:

- Stepper motors and its driving circuits for moving cameras.

- Power supply.

- Infrared sensors.

5.2.1: Stepper motors through application example

The goal of putting a stepper motor is to drive the camera which protects

the area, and because it's not moving continuously. It can be derived by a

pulses from a driving circuit to limit it's rotation upon the needed in the

applications need.

Actually in the application each camera will protect and scan 90° so the

motor will rotate maximum 90°.

The stepper motor is a synchronous motor, and typically has three-phase

or four-phase windings on the stator and when a pulse is given to one of

the phases of the stator the rotor tends to align with the MMF(magnetic

61

1

2 3

4

force) axis of the stator coil and the coils switched and the rotor follows

the stator MMF in sequence.

The stepper motor used is 1.8°/step, which indicates that to rotate the

motor 90° we need 50 pulses (steps). And also it has four phases, which

means to have four coils each coil has two wires. Which means four

wires will be an input pulse for the steps and the other wires will be put

to a power supply with +5V.

The excitation of the motors will happen when tow adjacent coils will

excited which means that the motor is Tow-Coil Excitation.

 Figure 5.2: Excitation of stepper motor coils

62

The following sequences are supposed:

Step A: coil1 input (1), coil2 input (1), coil3 input (0), coil4 input (0)

Step B: coil1 input (0), coil2 input (1), coil3 input (1), and coil4 input (0)

Step C: coil1 input (0), coil2 input (0), coil3 input (1), and coil4 input (1)

Step D: coil1 input (1), coil2 input (0), coil3 input (0), and coil4 input (1)

 Because of using 1.8° stepper motor each step of these means the motor

will rotate 1.8°, and after these four steps the motor rotated 1.8° X 4 =

7.2°.

 After this sequence of inputs the motor will rotate and this process is

repeated to derive the motor to one direction, and if there is a needing to

reverse the motor this sequence must be in the opposite direction as

follows:

Step A: coil1 input (0), coil2 input (0), coil3 input (1), coil4 input (1)

Step B: coil1 input (0), coil2 input (1), coil3 input (1), and coil4 input (0)

Step C: coil1 input (1), coil2 input (1), coil3 input (0), and coil4 input (0)

Step D: coil1 input (1), coil2 input (0), coil3 input (0), and coil4 input (1)

63

5.2.2 Power supply

Supplies power throughout the computer, convert potentially lethal 110-

115 or 220-230 volt alternating current (AC) into a steady low-voltage

direct current (DC) usable by the computer. A power supply is rated by

the number of watts it generates.

The output lines of power supply have different voltages according to the

color of the line, as we see in the following table:

Color of power supply line Value of voltage
Red +5V
Yellow +12V
Black Ground
Blue -12V
 Table 5.1: Wire voltage of power supply

In the application a power supply used from a PC which has four main

lines as we mentioned that needed for the application, which are:

• YELLOW Line: +12V and supplies 5A.

1- Used to supply Driving circuit.

2- Used to supply the electronic Sensor.

• BLACK Line: Ground

• RED Line: +5V and supplies 20A.

64

1- Used to supply the motor.

2- It is used as input to port A to indicate a signal when the power

is off, then stopping the pulses until returning the power again.

Note that when the power is OFF there will be an indication to the

processor to wait the power until return. And that happen by using the

RED line as input to port A.

5.2.3 Infrared Sensor

It is a passive infrared intrusion detector for electronic security system. It

detects intrusion by determining changes in infrared energy patterns. It

emits no radiation and is harmless to humans and animals.

The passive infrared sensor employs variable pulse-width adjustment and

a highly accurate range control to virtually eliminate false alarms without

sacrificing detection ability, this sensor performs better when provided

with a constant and stable foreground. The protected area should not

exceed the detector's selected detection range.

The maximum horizontally range the sensor protect is 120° and

Vertically the range depends on a calibration screw put on the sensor

electronic board; this screw can be celebrated to protect maximum 5

65

NCN

Meters up and 3 meters down with angle 120° which is enough to good

protection also from humans and small animals.

Connect the power inputs (8.2 TO 16Vdc) to the 12v + and – terminals.

 We connected these terminals to 24 hour normally closed circuit

protective in the control unit and if the front cover of the detector is

opened an immediately alarm signal will be sent and open the circuit.

We connected the terminals N and NC which is in the board of the sensor

with VCC (Voltage Control Source) and one of the port A inputs,

normally when no body is moving this circuit will be closed and the VCC

will still arrive to Port A input, but as soon as any body moves around a

signal appears and the circuit will be open and the VCC will stop flowing

to port A input so the signal which arrives to Port A input is 0.

No problem where we will make the input from the sensor to Port A, we

decided to put on bit 7.

 No Moving Body There is a Body Moving

66

NCN

5v 5v 5v 0v

 Figure 5.3: Controlling the movement by infrared sensors

5.3 The expected model design for the application example

The following figure appears the form of model design for the

application example "Electronic security system", its appear the location

of stepper motors, sensors and the guarded area:

67

Region C

Sensor A

Sensor C

Stepper motor (2)
With camera B

 Figure 5.4: Application example model design

5.4 Analysis the system management for parallel interfacing

68

Region A

Region B

Region A

Sensor B

Stepper motor (1)
With camera A

Guarded Area

System design provides a parallel interfacing by the Intel PPI (8255A),

the circuit of the device driver can connect to Industry Standard

Architecture (ISA) slot on a computer.

On application example we want to make port A input, and ports B, C

outputs; this is will be done by returning to the main control C codes on

our software system design and using the following code :

 out port b (cr , X)

Where X is a control word that will be loaded to the control register.

By choosing X to be 90H, the code will be : out port b (cr , 0x90)

Which makes port A input, and ports B, C outputs, we can see the control

register after loaded by 90H, if we return to chapter 4, figure: 4.3.

 1 0 0 1 0 0 0 0 = 90H

 Port A= Input

 Port CU=Out Port B=Out Port CL=Out

 Figure 5.5: Control register loaded by 90H

69

To give an address for the interfacing card the two decoders located in

the interface card are used which is 74LS154 (4*16 decoder), each

decoder have 10 lines (A0-A9), one of the decoders uses A6-A9 lines,

and the other uses A2-A5 lines, and to select the ports (Port A, Port B,

Port C, And the control register) we use the lines A0 and A1.

Now, application example can use the ports as following:

1- Port A:

The port A which has 8 pins used as input ports from

signals come through the following:

• Infrared Sensor A: this sensor protects region (side) of the

model which is A, the signal from the sensor is connected to

D7, and it acts as active low signal which means that it's

normally 1 if there is no moving body, and as soon as

something moves the signal will be 0 (opens the circuit).

• Infrared sensor B: this sensor will protect Region B in the

model, and it's connected to D6, the signal is normally 1,

and when a body enters the region the signal will be 0.

70

• Infrared Sensor C: this sensor will protect region C, and its

signal connected to D4, and acts as sensor B (active high).

• Power Supply (Red line = 5v): this line is connected to D5,

normally when the power supply is ON there will be a signal

on D5 and the pulses will continue,

• But when the power supply get OFF the signal will be Zero

and the Loops in the software will stop until returning the

power supply being ON, so it's active low line.

Figure 5.6 : Connecting the power supply and infrared sensors with Port A.

71

The Main Input Words on Port A is:

05H: There is no Moving Bodies, Power Supply is ON

04H: a body Enters in Region A, Power is on.

07H: a body Enters in Region B, Power is on.

0DH: a body Enters in Region C, Power is on.

0FH: a body Enters in Region B, C Power is on.

0EH: a body enters in Region A, B, C Power is on.

2- Port B:

 This port is used an output Port to supply Pulses to the driving

circuit of the motors, so we loaded this Port initially with an

integer x = 6666H to get a sequence of Pair of ones in each four

bits, we have used The Port as Follows:

• B0-B3: used to drive the motor A.

• B4-B7: used to drive the motor B.

To prevent motor B to rotate in case (A0-A3) we ANDED X by

000F then A3-A7 will be Zeroes, and when driving motor B we

ANDED x by 00F0, So A0-A3 will be zeroes.

5.5 Controlling the stepper motors movement

72

As mentioned on this chapter, port B of the Intel PPI (8255A), is satisfied

to be output port for stepper motors, for controlling stepper motor

movement we use the driving circuit.

Driving circuit consists the following:

1. IC L293NE: supports four channels with 1 A of current

maximum, with 2 enable lines, each one enables two of the four

channels. The four inputs are connected to driving sequence lines

four lines from port B. when the input of the IC is high, the

output of the corresponding line is 12V, and when the input is

low the output is 1.5V.

2. Two clamping diodes: these diodes protect the IC from back

currents which may burn the IC.

3. 200Ώ resistor: this resistor helps in biasing the TIP31C transistor

and make its operation in the saturation region.

The base current when high input will be:

 IB = V ss -V BE = 12v – 1.8v = 50mA
 200 Ώ 200 Ώ

And the saturation collector current will be (Vce(sat) = 1.2v):

73

 Ic (sat) = Vcc – VcE(sat) = 5v - 1.2v = 2.10A
 Rcoil – RcE 1.4 + 0.4

When there is no input (OFF) the coil resistance is 1.4 Ώ, and when ON

it will increase depending on magnetic field generated, and collector

current will be 1.70 A

5.6 Analysis of the software application example

1. Power supply controlling analysis:

74

The power supply must be ON while running the software, and as we

mentioned before, the power supply is connected on D5 in the input word

of port A (see figure 5.6).

If D5 is one "1" this means power supply is ON, and if D5 is zero "0" the

power supply will be Off.

To achieve that power supply is (ON) during all the software, the input

word of port A is logically ANDED with (o4 H) by the command

 if((inportb(pa)&0x04)==0x04) during all the software, which makes

D5 is always one "1".

So the power supply will be ON and the following figure explains more

about this operation:

75

Power supply

 Input word
Of port A

 D7 D6 D5 D4 D3 D2 D1 D0

 &

 0 0 1 0 0 0 0 0

 0 0 1 0 0 0 0 0

 Figure 5.7: Analysis of power supply controlling

2. Stepper motors controlling analysis:

The stepper motor will be moved depending on the words loaded to

76

Logically
andding with

04H

Power supply
ON

The result

 port B. In the software some cases need to move motor (1) only, or

moving motor (2) only, and sometimes there is a needing to move both of

them at the same time, so port B are divided into two parts:

Part 1(B0-B3): to drive stepper motor (1) so when using this part B4-B7

is canceled by the logically ANDING. The word loaded to Port B with

0F.This operation achieved by the command: int y=0x000f&x.

The following figure shows the operation in detail:

 Motor (2) Motor (1)

 B7 B6 B5 B4 B3 B2 B1 B0

&

 0 0 0 0 1 1 1 1

 Motor (2) canceled

 Figure 5.8: Canceling the work of motor 2

77

 Output word
Of port B

Logically
andding with

0F H

The result

Part 2(B0-B3): to drive stepper motor (2) so when using this part B0-B3

is canceled by logical ANDING the word loaded to Port B with F0, this

operation achieved by the command: int y=0x00f0&x.

The following figure shows the operation in details:

 Motor (2) Motor (1)

 B7 B6 B5 B4 B3 B2 B1 B0

&
 1 1 1 1 0 0 0 0

Motor (1) canceled

 Figure 5.9: Canceling the work of motor 1

78

 Output word
Of port B

Logically
andding with

F0 H

The result

In the case of moving the two stepper motors at the same time, the two

commands: int y=0x000f&x, int y=0x00f0&x are used in different

two loops of the same program.

The command "rot" used in two forms there are" rotr" for rotating the

motor to the right side, and" rotl " for left side, the delay time must be

suitable for steper motors movements.

For all application example software in C, see Appendix B.

79

Conclusion

We can’t say that C doesn’t excel in scientific computing applications, at

the same time; C doesn’t always succeed in this domain,

It is said that [15] “there are many fields C doesn’t excel, such as

scientific computing”, but this may be right on some applications but not

at all. C is not the problem, but how to use C is the problem. There is

wide range of applications which C isn't s only relevant but it also

powerful, on the contrary C will be a poor tool on other applications.

Although mathematical applications are a primary concern to speed

which C satisfies, but this work recommends not to use C on this domain.

Using C is too different from C++ through scientific applications. The

advantages features for object oriented (OO) doesn’t make C++ better

than C at all. On some applications the OO features may not be

a primary concern as other factors which C achieves and C++ doesn’t.

All of these ideas, problems, and results are manipulated scientifically by

both: research and analysis.

The idea of converting a system design of parallel interface application

into a general system can be achieved if we use parallel interfacing with

80

a parallel peripheral interface PPI (8255A) as interface device, and

computer’s CPU for main system controlling, and a C as a device driver

and system software. This design system will be general for using it for

multiple applications with a good level of efficiency and performance.

The full design and implementation of the system was scientifically

discussed and analyzed through this work.

We have evaluated the performance of designed and the efficiency of C

through analyzing the example which was demonstrated in chapter five.

81

Future Work

 Try to design a parallel interface system with C management, which

 Using a PCI (Peripheral Component Interconnect) computer’s slot

 Instead of ISA (Industry Standard Architecture) slot, to plug the PPI

 8255A circuit, this is will increase the speed of data transfer while

 interfacing and controlling the input/ output devices of the system,

 especially that PCI can transfer the data at least with 132 MB per

 second, while ISA with 16 MB per second.

82

References

1- Patt, yale N, 2001, Introduction to computing systems, Mc Graw

 Hill.

2- Buchanan, William, 1995, C for electronic engineering, Prentice

 Hall.

3- Etter, Delores M, 1995, Engineering problems solving with ANSI C,

 prentice Hall.

4- Ferraris, Guido Buzzi, 1993, Scientific C++, Addison-Wesley

 publishing company.

5- Ege, Raimund K, 1994, Object-Oriented programming with C++,

 Ap Professional.

6- Groth, David, 2003, A+ Complete, San Francisco. London.

7- Singh, Avtar and Triebel, Walter A, 1991, 16-Bit and 32-Bit

 Microprocessors, Prentice Hall.

8- Division, R&D, 1991, Experimental book of MTS-88.C the 16 bits.

 8088 CPU, K&H MFG. CO. LTD.

83

9- Gibson, Gleen A and Liu, Yu-Cheng, 1986, Microcomputer systems

 the 8086/8088 family, Prentice Hall.

10- Tanenbaum, Andrew S, 1986, Structured Computer Organization,

 Prentice Hall.

11- Press, William H Teukolsky Saul A Flannery Brain p and

 Vetterling William T, 1993, Numerical Recipes in C, Cambridge

 University Press.

12- Bilson, Richard C.2003. Implementing overloading and

 polymorephism in C for all. M.Sc diss., University of Waterloo.

13- Fu, Guangrui. 1999.Design and implementation of an operating

 system in standard Ml. M.Sc diss., University of Hawaii.

14- Jye Chang, yuh.1999. Architecture of fine-grained data flow network

 programming environments. PhD diss., University of Syracuse.

15- Zhong, Weilin.2001. Why C is not my favorite language.

 http://www.cs.virginia.edu/~wz5r/cs655/whycnot.htm

16- Fateman, Richard.2000. Why C is not my favorite language.

 http://www.cs.berkeley.edu/~fateman/papers/software.pdf

84

17- Grenning, James.2003. Why are you still using C.

http://www.objectmentor.com/resources/articles/WhyAreYouStillUsingC.pdf

18- Ricdude.2001. Athread on the C programming language.

 http://www.advogato.org/article/230.html

19- Whiteley, Jonathan.2005. C++ for scientific computing.

 http://web.comlab.ox.ac.uk/oucl/courses/topics04-05/cs

20- Wilson, Kyle.2006. Why C++.

 http://gamearchitect.net/Articles/WhyC++.html

21- Zolman, Leor.2006. Why Java should be your first programming

 language.

 http://www.course.com/techtrends/java_0899.cfm

22- Johnson, s.c and Ritchie, D.M.1978. Portability of C programming

 and the Unix system, Bell System Technical Journal.

23- Krahn, Joe.2006. Scientific programming: perl or python.

 http://www.niehs.nih.gov/Connections/2002/sept/python.htm

24- Coombs, M.J and Alty, J.L, 1981, Computer skills and the user

 interface, Academic Press.

25- Heller, Martin.2001.Solutions for scientific computing in engineering

 and science.

85

26- Kernighan and Ritchie.2006.Introduction to programming for

 scientific computing.http://www.math.nyu.edu.

27- Why learn C.2006.http://www.cprogramming.com.

28- Why not C.2003.http://www.catb.org.

29- Why C and C++ are awful programming languages.2006.

 http://www.cs.rice.edu.

30. (Alavoor Va sudevau), AI Dev.2002.C++ programming How-To.

 http://www.linuxarkivet.se.

31- Ztf.2001.Sounds like the goals of java.

 http://www.advogato.org/article/230.html

32- Moshez.2001.What is C.

 http://www.advogato.org/article/230.html

33- Intel.2004.Motorola- to- Intel IXP4XX Product Line and IXC1100

 Control Plane Processors.

 http://download.intel.com/design/network/swsup/25323202.pdf

34- What is C/C++.2005.http:// www.techiwarehouse.com/cms/articles.

 php.

86

http://www.techiwarehouse.com/cms/articles
http://www.linuxarkivet.se/
http://www.cs.rice.edu/

35- Lam, C.2004. Engineer to Engineer Note/ Interfacing TFT LCD

 Panels to ADSP-BF533 Blackfin processors via PPI.

 http://www .analog.com/ee-notes

36- ADI’s DSP Applications and Development Tools

 Groups.1998.Engineer to Engineer Note/ADSP-2100 Family.

 http://www.analog.com/dsp

37- Bjarne Stroustrup.2000. Appendix B/ Compatibility.

 http:// www.research.att.com/~bs/3rd_compat.pdf

38- Smith, Steven W, 1997, The Scientist and Engineer's Guide to

 Digital Signal Processing, California Technical Publishing.

39- An Introduction to C.2000.

 http://www.apnet.com/bookscat/samples/9780750648318/978075064831
 8.pdf

40- Ziring, Neal.1999. Dictionary of programming languages.

 http://cgibin.erols.com/ziring/cgi-bin/cep/cep.pl?_alpha=c

41- Hughey, Richard, IEEE Computer Society,1992.Programming

 Systolic Arrays,Computer Engineering Board-University of

 California.

 http://www.soe.ucsc.edu/research/kestrel/papers/asap92.pdf

87

http://www.soe.ucsc.edu/research/kestrel/papers/asap92.pdf
http://cgibin.erols.com/ziring/cgi-bin/cep/cep.pl?_alpha=c
http://www.apnet.com/bookscat/samples/9780750648318/978075064831%20%20
http://www/
http://www/

42- T.D.Burd and R.W. Broderson. Processor design for portable system.

 Journal of VLSI Signal processing, 13(2/3):203-222,August/

 September 1996.

43- N.Morgan, J. Beck, P. Khon, j. Bilmes, E. Allman, and J. Beer.

 The Ring Arrasy Processor(RAP): A multiprocessing peripheral

 for connectionist applications. Journal of Parallel and Distributed

 Computing, 14:248-259, April, 1992.

44- M.Bass, P.Knebel,D.W.Quint, and W.L.Walker.The PA 7100LC

 Microprocessor: a case study of IC design in a competitive

 environment. Hewlett-Packard journal, 46(2):12-22,April, 1995.

45- Dennis M.Ritchie. The development of the C language.In the

 Second ACM SIGPLAN conference on History of programming

 Languages, pages 201-208.ACM Press, April,1993.

46- Bjarne Stroustrup. C and C++: a case for compatibility.

 The C/C++ Users Journal, July, 2002.

88

47- Andrew Tolmach.Tag-free garbage collection using explicit type

 Parameters. In Proceedings of the 1994 ACM conference on LISP

 And functional programming, pages 1-11.ACM Press, 1994.

48- Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks,

 Yanling Wang, and James Cheney. Cyclone:A safe dialect of C.

 In USENIX Anuual Technical Conference, June 2002.

49- A History of C++: 1979-1991. Proc ACM History of Programming

 Languages conference (HOPL-2). ACM Sigplan Notices. Vol 28 No3,

 pp 271-298. March 1993. Also, History of Programming languages

 (editors T.J.Begin and R.G.Gibson) Addison-Wesley, ISBN 1-201-

 89502-1. 1996.

89

http://www.research.att.com/~bs/hopl2.pdf

Appendix A

90

 In this appendix we use the (Windows XP Performance Test) to improve

the speed of C, by making a comparison between two simple similar

programs, the first is written by C, and the second by JAVA.

Running the (Windows XP Performance Test):

1- Press Ctrl + Alt + Delete on the windows desktop.

2- Choose the (View Kernel Time) from View List.

3- Choose the (High Speed) from View List.

4- Choose (Performance).

The Comparison Experiment:

The C Program: The JAVA Program:

#include<stdio.h.> import java.io.*;

main() class hello{

{ public static void main(String[] args){

printf("welcome); System.out.print("welcome");

 return 0; }

 } }

The output of the two programs is printing (welcome word).

91

After running the C program, The CPU Usage reaches to 21%, as we

see:

92

After running the JAVA program, The CPU Usage reaches to 41%, as

we see:

93

Conclusion of the results:

The CPU Usage by C program is 21%

The CPU Usage by JAVA program is 41%

94

Appendix B

95

Through this appendix, we can see the full software of application
example:

/* wrriten by Mohammad Abu Omar*/
/* M.Sc. thesis 2005-2006*/
#include<graphics.h>
#include<stdio.h>
#include<dos.h>
#include<stdlib.h>
#include<conio.h>
#define pa 0x300/* giving 300H as address to port A in the PPI 8255A*/
#define pb 0x301/* giving 301H as address to port B in the PPI 8255A*/
#define pc 0x302/* giving 302H as address to port C in the PPI 8255A*/
#define cr 0x303/* giving 300H as address to control register Cr in the
 PPI 8255A*/
main()
{
int x=0x6666, j=0, i=0, r=10, c=10;
/* loading the control register Cr in the 8255A by 80H to make port A as input
port and ports B, C as output ports*/

 outportb(cr,0x80);
 while((r!=0)&&(c!=0)){
 clrscr();

 printf("No body is moving now");
 printf("what is the camera you want\n1- Camera
A\n2- Camera B\n3- Both\n Enter your choice:");
 scanf("%d",&c);
 printf("\n where do you want the camera to
move:\n1-To College\n2-To Garden\n3-To the
Research Center\n4-Hand free moving\n5-Auto
protection\nEnter your choice:");
 scanf("%d",&r);

96

/* Moving Camera A to the College */

 if((c==1)&&(r==1)){

 while(i<10){
/* Checking if power supply is on or not, by andding port A Logically with 04H */

 if((inportb(pa)&0x04)==0x04) {
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; } }
 while(i>10){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--; } }

 }

97

/* Moving Camera B to the College */
 if((c==2)&&(r==1)){
 while(j<45){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 j++;
 delay(35);
 }}
 while(j>45){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 j--;
 delay(35);
 }}
 }

98

/* Moving Camera A to the Garden */

 if((c==1)&&(r==2)){

 while(i<30){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; } }
 while(i>30){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--; } }

 }

99

 /* Moving Camera B to the Garden */

 if((c==2)&&(r==2)){

 while(j<20){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 j++; } }

 while(j>20){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;; } }

 }

100

/* Moving Camera A and B to the College */

 if((c==3)&&(r==1)){
 while(i<10){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; } }

 while(i>10){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--; } }

101

 while(j<45){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 j++;
 delay(35);
 }}

 while(j>45){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotr(x,1);
 j--;
 delay(35);
 }}
 }

102

/* Moving Camera A and B to the Garden */

 if((c==3)&&(r==2)){

 while(j<20){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 delay(35);
 j++; } }

 while(j>20){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;; } }

 while(i<30){

103

/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; } }

 while(i>30){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--; } }
 }

/* Moving Camera A to the research center */

 if((c==1)&&(r==3)){

 while(i<44){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){

104

/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; } }

 while(i>44){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--; } }

 }

 /* Moving Camera B to the research center */

 if((c==2)&&(r==3)){

 while(j<15){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){

105

/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 delay(35);
 j++; } }

 while(j>15){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;; } }

 }

/* Moving Camera A and B to the garden */

 if((c==3)&&(r==2)){

 while(j<20){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){

106

/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 delay(35);
 j++; } }

 while(j>20){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;; } }

 while(i<30){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();

107

 /* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; } }

 while(i>30){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--; } }
 }

/* Moving Camera A and B to the research center */
 if((c==3)&&(r==3)){

 while(j<15){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 delay(35);
 j++; } }

108

 while(j>15){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;; } }

 while(i<44){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; } }
 while(i>44){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;

109

 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--; } }
 }

/* Hand Moving Camera A in */

 if((c==1)&&(r==4)){
 while(inportb(0x60)!=0x01){
 while((inportb(0x60)==77)&&(i<50)){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 i++;
 delay(15);
 }}
 while((inportb(0x60)==75)&&(i>1)){

/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){

/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);

110

/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotl(x,1);
 i--;
 delay(15);
 }} }

 }
/* Hand Moving Camera B in */
 if((c==2)&&(r==4)){
/* Checking if pin A7 in port A is loaded by 0H, which makes sensor A ON
 which means there is a body in region A*/
 while(inportb(0x60)!=0x01){
 while((inportb(0x60)==30)&&(j<50)){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 j++;
 delay(15);
 }}

 while((inportb(0x60)==31)&&(j>1)){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);

111

/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 j--;
 delay(15);
 }} }

 }
/* Hand Moving Camera A and B in */

 if((c==3)&&(r==4)){

 while(inportb(0x60)!=0x01){

 while((inportb(0x60)==77)&&(i<50)){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 i++;
 delay(15);
 }}
 while((inportb(0x60)==75)&&(i>1)){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);

112

/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 i--;
 delay(15);
 }}

 while((inportb(0x60)==30)&&(j<50)){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 j++;
 delay(15);
 }}

 while((inportb(0x60)==31)&&(j>1)){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 j--;
 delay(15);
 }} }

 }

113

 if((c==3)&&(r==5)){
clrscr();

/* Checking if pin A7 in port A loaded by 0H, which makes sensor A on which
 Means there is a body in region A*/

while(inportb(0x60)!=0x01){
/* Checking if power supply is on or not, by checking if port A loaded with 04H */

while(inportb(pa)==0x04){

 while(i<50){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
 clrscr();
 gotoxy(10,10);
 printf("security system detects abody In region
A be carefull!!!!!!!!!!!");
 textcolor(2009);
 textbackground(120);
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++; }

 }
 while(i>1){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;

114

 outport(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--;}
 }
}
/* Checking if pins A5-A7 in port A are loaded by 1H,and pin A4 is loaded by 0H,
 which makes sensor B ON, which means there is a body in region B*/
 while(inportb(pa)==0x07){

 while(j<50){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
 clrscr();
 gotoxy(10,10);
printf("security system detects abody from
region B be carefull!!!!!!!!!!!");
 textcolor(2005);
 textbackground(120);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 delay(35);

 j++;}
 }

115

 while(j>1){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outport(pb,y);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotr(x,1);
 delay(35);

 j--;} }
 }
/* Checking if pins A4-A7 in port A are loaded by1,1,0,1H,
 which make sensor C ON, which means there is a body in region C*/
 while(inportb(pa)==0x0d){

 while(j<50){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
 /* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the
work of stepper motor 1 and camera A. B4-B7 in port B will be active and
stepper motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
 clrscr();
gotoxy(10,10);
 printf("security system detects abody from
Region C and right be carefull!!!!!!!!!!!");
 textcolor(2011);
 textbackground(122);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);

116

 delay(35);
 j++; }

 }

 while(j>1){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outport(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;}
 } }
/* Checking if pins A4-A7 in port A are loaded by1,1,1,1H,
 which make sensors B, C ON, which means there are bodies in regions B and C*/
 while(inportb(pa)==0x0f){

 while(j<50){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);
 clrscr();
gotoxy(10,10);
 printf("security system detects abody from
Regions B & C and right be
carefull!!!!!!!!!!!");

117

 textcolor(2011);
 textbackground(122);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 delay(35);
 j++;}

 }

 while(j>1){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outport(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;}
 }}
/* Checking if pins A4-A7 in port A are loaded by1,1,1,0H,
 which make sensors A,B, C ON, which means there are bodies in regions A, B
 and C*/
 while(inportb(pa)==0x0e){
 while(i<50){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);

118

 clrscr();
 gotoxy(10,10);
 printf("security system detects abody from All
Regions and right be carefull!!!!!!!!!!!");
 textcolor(2011);
 textbackground(122);
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 delay(35);
 i++;}

 }

 while(i>1){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outport(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 delay(35);
 i--;}
 }

while(j<50){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outportb(pb,y);

119

 clrscr();
gotoxy(10,10);
 printf("security system detects abody from All
Regions and right be carefull!!!!!!!!!!!");
 textcolor(2011);
 textbackground(122);
/* Rotating the stepper motor 2 with camera B to the left side*/
 x=_rotl(x,1);
 delay(35);
 j++;}

 }
 while(j>1){
/* Checking if power supply is on or not, by andding port A Logically with 04H */
 if((inportb(pa)&0x04)==0x04){
/* Loading port B by F0H, to cancel the B0-B3 in port B and also cancel the work
of stepper motor 1 and camera A. B4-B7 in port B will be active and stepper
motor2 and camera B will be drive */
 int y=0x00f0&x;
 outport(pb,y);
/* Rotating the stepper motor 2 with camera B to the right side*/
 x=_rotr(x,1);
 delay(35);
 j--;}
 }}
 while((inportb(0x60)==77)&&(i<=50)){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the right side*/
 x=_rotr(x,1);
 i++;
 delay(15);

120

 }
 while((inportb(0x60)==75)&&(i>=1)){
/* Loading port B by 0FH, to cancel the B4-B7 in port B and also cancel the work
of stepper motor 2 and camera B. B0-B3 in port B will be active and stepper
motor1 and camera A will be drive */
 int y=0x000f&x;
 outportb(pb,y);
/* Rotating the stepper motor 1 with camera A to the left side*/
 x=_rotl(x,1);
 i--;
 delay(15);
 }
clrscr();
gotoxy(15,15);
printf("%d",inportb(0x60));

delay(100);

}

 delay(35);
 }

 }

return 0;
}

121

	cover page
	Abstract
	Thesis

